2) EN 610 3) EN 610 4) EN 501 EI EI EI	22: 1998+A1: 20 00-3-2:2000 00-3-3: 1995+A 30-4:1995+A1:1 N 61000-4-2: 199 N 61000-4-4: 199	1: 2001 1998 95+A2: 2001 / EN 61000-4-3: 1996+A2: 2001 95+A2: 2001 / EN61000-4-5: 1995+A1: 2001 96+A1: 2001 / EN 61000-4-11: 1994+A1: 2001
EQUIPMENT	: Through Bear	n Photoelectric Beam Sensor
MODEL NO.	: IR-3000G	
APPLICANT	: YUAN HSUN	N ELECTRIC CO., LTD.
		NG HE RD., ZUO-YING DIST., KAOHSIUNG AIWAN, R. O. C.
Test Engineer	:	SIMON LIU
Checked by	:	HADES HUANG
Issued Date	:	NOV. 07, 2003

	TABLE OF CONTENTS	
1.	General	
- •	1.1 General Information	
	1.2 Place of Measurement	
	1.3 Test standard	
2.	Product Information/Product Technical Judgement	
3.	EUT Description and Test Conclusion	
4.	Modification(s)	
5.	Test Software Used	
6.	Support Equipment Used	
7.	EN 55022 Conducted Disturbance Test	
8.	EN 55022 Radiated Disturbance Test	
	8.1 Test Description	
	8.2 Test Setup	
	8.3 Test Limits	
	8.4 Test Setup photos	
	8.5 Test Data	
9.	EN 61000-4-2 Electrostatic Discharge Test	
	9.1 Test Description	
	9.2 Test Setup	
	9.3 Test Limits	
	9.4 Discharge Drawing9.5 Test Data	

10.	EN 61000-4-3 Radio-Frequency Electromagnetic Field Test	 29
	10.1 Test Description	
	10.2 Test Block Diagram	
	10.3 Test Limits	
	10.4 Test Setup Photo	
11.	EN 50130-4 Clause 7 Main Supply Voltage Variations Test 11.1 Tests Description	 35
12.	The List of Test Instruments	 37
13.	EUT Photographs	 39

1. General

1.1 General Information :

Applicant : YUAN HSUN ELECTRIC CO., LTD.

NO. 57, CHUNG HE RD., ZUO-YING DIST., KAOHSIUNG CITY 813, TAIWAN, R. O. C.

Manufacturer : YUAN HSUN ELECTRIC CO., LTD.

NO. 57, CHUNG HE RD., ZUO-YING DIST., KAOHSIUNG CITY 813, TAIWAN, R. O. C.

Measurement Procedure : EN 55022 & EN 50130-4

1.2 Place of Measurement

PEP TESTING LABORATORY

12-3Fl, No. 27-1, Lane 169, Kang-Ning St., Hsi-Chih, Taipei Hsien, Taiwan, R. O. C. TEL: 8862-26922097 FAX: 8862-26956236

> NVLAP LAB CODE 200097-0 FCC Registration No. : 90868 Nemko Aut. No. : ELA133 BSMI Aut. No. : SL2-IN-E-11,SL2-A1-E-11 VCCI Registration No. : C-493/R-477

1.3 Test standard

Tested for compliance with :

EN 55022:1998 +A1: 2000	 Information Technology Equipment – Radio disturbance characteristics - Limits and methods of measurement
EN 61000-3-2: 2000	- Electromagnetic compatibility (EMC) Part 3-2: Limits – Limits for harmonic current emissions (equipment input Current up to and including 16A per phase
EN 61000-3-3: 1995 +A1: 2001	 Electromagnetic compatibility (EMC) Part 3-2: Limits – Limitation of voltage fluctuations and flicker in low-voltage supply systems for equipment with rated current up to 16A

	 Alarm systems – Part 4. Electromagnetic compatibility Product family standard: Immunity requirements for components of fire, intruder and social alarm systems
EN 61000-4-2: 1995 +A2: 2001	- Electromagnetic compatibility (EMC) Part 4: Testing and measurement techniques, Section 2: Electrostatic discharge immunity test Basic EMC Publication
EN 61000-4-3: 1996 +A2: 2001	- Electromagnetic compatibility (EMC) Part 4: Testing and measurement techniques, Section 3: Radiated, radio- Frequency, electromagnetic field immunity test
EN 61000-4-4: 1995 +A2: 2001	 Electromagnetic compatibility (EMC) Part 4: Testing and measurement techniques, Section 4: Electrical fast transien / Burst immunity test Basic EMC publication
EN 61000-4-5: 1995 +A1: 2001	- Electromagnetic compatibility (EMC) Part 4: Testing and measurement techniques, Section 5: Surge immunity test (includes corrigendum: 1995)
EN 61000-4-6: 1996 +A1: 2001	- Electromagnetic compatibility (EMC) Part 4: Testing and measurement techniques, Section 6: Immunity to conducted disturbances, induced by radio-frequency fields
EN 61000-4-11: 1994 +A1: 2001	- Electromagnetic compatibility (EMC) Part 4: Testing and measurement techniques, Section 11: Voltage dips, short interruptions and voltage variations immunity tests

2. Pr	oduct Informatio	n
a.	EUT Name:	Through Beam Photoelectric Beam Sensor
b.	Model No. :	IR-3000G
c.	СРИ Туре :	N/A
d.	CPU Frequency :	N/A
e.	Crystal/Oscillator(s) :	N/A
f.	Chassis Used :	ABS
g.	Port/Connector(s) :	N/A
h.	Power Rating :	Direct DC 24V
i.	Condition of the EUT :	 Prototype Sample Production Sample
j.	Test Item Receipt Date :	NOV. 03, 2003

2a. Product Technical Judgement

Based on the major electrical and mechanical constrictions of the EUT, We hereby declare that the subject product does fully comply with the following EMC requirements without additional test required :

1) EN 61000-3-2: 2000 2) EN 61000-3-3: 1995+A1: 2001 3) EN 61000-4-4: 1995+A2: 2001 4) EN 61000-4-5: 1995+A1: 2001 5) EN 61000-4-6: 1996+A1: 2001 6) EN 61000-4-11: 1994+A1: 2001

These test standards will be applicable to both of PEP EMC verification and declaration of conformity for technical reference.

3. EUT Description and Test Conclusion

The equipment under test (EUT) is Through Beam Photoelectric Beam Sensor model IR-3000G. The EUT that consists of a transmitter and a receiver is used for the applications at place such as gate or garage door, overhead doors, barrier, door entrance, alarm system or parking lot. The sensing range between EUT transmitter and receiver is 30 meters. DC 10~24V from any power source is required to operate EUT. For more detail specification about EUT, please refer to the user's manual.

- Test method: According to the major function designed, the placement of EUT transmitter and receiver was arranged for test and the test was respectively carried out on the following operational condition.
 - (A) Tx On: a) Connect NA terminal of EUT receiver and Line of AC source;
 - b) Connect C terminal of EUT receiver and Neutral of AC source via a lamp load;
 - c) Respectively supply EUT transmitter and receiver DC 24V from DC power source.
 - (B) Tx Off: a) Connect NC terminal of EUT receiver and Line of AC source;
 - b) Connect C terminal of EUT receiver and Neutral of AC source via a lamp load;
 - c) Respectively supply EUT transmitter and receiver DC 24V from DC power source.

The worst-case test result of each test mode was recorded and provided in this report.

Conducted emission test: N/A

Radiated emission test:

The maximum readings were found by varying the height of antenna and then rotating the turntable. Both polarization of antenna, horizontal and vertical, are measured. The effect of varying the position of the interface cables has been investigated to find the configuration that produces maximum emission.

The highest emissions were also analyzed in details by operating the spectrum analyzer in fixed tuned quasi-peak mode to determine the precise amplitude of the emissions.

In addition, the following test standards are applicable for related tests being carried out on the same EUT configuration and operational condition kept during radiated emission test and conducted emission test:

EN 61000-4-2, EN 61000-4-3, EN 61000-4-11 and Main Supply Voltage Variations.

4. Modification(s):

N/A

5. Test Software Used

N/A

6. Support Equipment Used

1. DC Power Supply

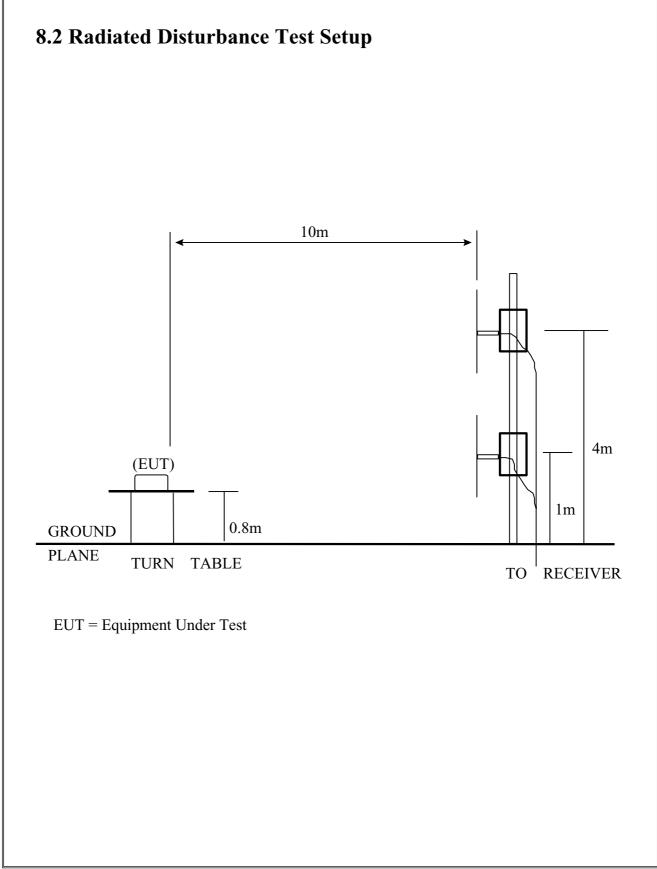
Manufacturer : ABM Model Number : 9306D Power Cord : Non-Shielded, Detachable, 1m

2. The Overload of Lamp

7. EN 55022 Conducted Disturbance Test

Test Standard	Model No.	Result
EN 55022	IR-3000G	N/A

8. EN 55022 Radiated Disturbance Test


Test Standard	Model No.	Result
EN 55022	IR-3000G	Passed

8.1 Radiated Disturbance Test Description

Preliminary measurements were made indoors chamber at 3 meter using broadband antennas, broadband amplifier, and spectrum analyzer to determine the frequency producing the maximum EME. Appropriate precaution was taken to ensure that all EME from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, turntable azimuth with respect to the antenna were noted for each frequency found. The spectrum was scanned from 30 to 1000 MHz using logbicon antenna. Above 1GHz, linearly polarized double ridge horn antenna were used.

Final measurements were made outdoors at 10-meter test range using biconical, dipole antenna or horn antenna. The test equipment was placed on a wooden bench situated on a 1.5x1 meter area adjacent to the measurement area. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. Each frequency found during pre-scan measurements was re-examined and investigated using Quasi-Peak Adapter. The detector function was set to CISPR quasi-peak mode and the bandwidth of the receiver was set to 120kHz.

The half-wave dipole antenna was tuned to the frequency found during preliminary radiated measurements. The EUT, support equipment and interconnecting cables were re-configured to the set-up producing the maximum emission for the frequency and were placed on top of a 0.8-meter high non-metallic 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were re-arranged and manipulated to maximize each EME emission. The turntable containing the system was rotated; the antenna height was varied 1 to 4 meters and stopped at the azimuth or height producing the maximum emission.

8.3 Radiated Disturbance Test Limits

Limits for radiated disturbance of Class A ITE at a measuring distance of 10 m

Frequency MHz	Field Strength dB(μ V/m)
30 to 230	40
230 to 1 000	47
NOTES 1 The lower limit shall apply at th	e transition frequency.

Additional provisions may be required for cases where interference occurs.

Limits for radiated disturbance of Class B ITE at a measuring distance of 10 m

Frequency MHz	Field Strength dB(µ V/m)
30 to 230	30
230 to 1 000	37

NOTES

1 The lower limit shall apply at the transition frequency.

2 Additional provisions may be required for cases where interference occurs.

8.4 Radiated Disturbance Test Setup Photos TX ON MODE < FRONT VIEW > E920630 < REAR VIEW >

TX OFF MODE < FRONT VIEW >

< REAR VIEW >

Model No.: IR-3000GFrequency range: 30MHz to 1GHzDetector: Quasi-Peak ValueFrequency range: above 1GHzDetector: Quasi-Peak/Average ValueTemperature: 26° CHumidity: 56 %Memo: TX ON MODE						alue			
	Antenna	polariz	ation: <u> </u>	<u>iorizo</u>	DNTAL	<u>;</u> Test	distanc	e: <u>10n</u>	<u>n ;</u>
		Over	Limit	Read	Antenna	Cable	Preamp		
Freq. (MHz)	Level (dBuV/m)	Limit (dB)	Line (dBuV/m)	Level (dBuV)	Factor (dB)	Loss (dB)	Factor (dB)	Azimuth (°angle)	Antenna High(m)
38.422	19.66	-10.34	30.00	24.48	14.53	0.61	19.96	117.0	4.0
229.564	17.61	-12.39	30.00	26.26	9.37	1.52	19.54	141.0	4.0
242.429	22.84	-14.16	37.00	30.27	10.48	1.57	19.48	93.0	4.0
586.915	25.44	-11.56	37.00	21.42	20.24	2.59	18.81	85.0	3.5
747 064	27.96	- 9.04	37.00	20.01	24.34	2.80	19.19	217.0	3.5
747.354									

Note :

- Level = Read Level + Antenna Factor + Cable Loss Preamp Factor
 Over Limit = Level Limit Line

Model No. Frequency range Frequency range Temperature Memo		ge : 30N ge : abo : 26			etector etector umidity	: Quasi-Peak Value : Quasi-Peak/Average Value : 56 %			
	Antenna	a polari	ization:_	VERTI	CAL;	Test	distance	: <u>10m</u>	• •
		Over	Limit	Read	Antenna	Cable	Preamp		
Freq. (MHz)	Level (dBuV/m)	Limit (dB)	Line (dBuV/m)	Level (dBuV)	Factor (dB)	Loss (dB)	Factor (dB)	Azimuth (°angle)	Antenna High(m)
46.366	22.38	- 7.62	30.00	30.62	11.19	0.57	20.00	221.0	1.0
19.935	20.17	- 9.83	30.00	33.02	6.15	0.90	19.90	239.0	1.0
74.246	18.87	-11.13	30.00	25.83	11.34	1.30	19.60	104.0	1.0
42.184	25.85	-11.15	37.00	26.72	16.56	2.28	19.71	172.0	1.5
586.958	26.07	-10.93	37.00	22.05	20.24	2.59	18.81	302.0	1.5
708.835	27.72	- 9.28	37.00	22.72	21.56	2.72	19.28	159.0	1.5
١	Note :								
			evel + Ante evel – Limit		or + Cabl	e Loss -	- Preamp F	actor	

Frequ	ency rang ency rang erature	e : 30M e : abo : 26 : TX	3000G IHz to 1G ve 1GHz ° C OFF MOI cation : <u>I</u>	D H DE	Oetector Oetector Iumidity ONTAL	: Qua : 56	nsi-Peak V nsi-Peak/A 5 % t distanc		
Freq. (MHz)	Level (dBuV/m)	Over Limit (dB)	Limit Line (dBuV/m)	Read Level (dBuV)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Azimuth (°angle)	Antenna High(m)
38.433 119.941 229.565 499.593 586.922 747.341	20.99 19.69 16.86 25.52 26.05 25.38	- 9.01 -10.31 -13.14 -11.48 -10.95 -11.62	30.00 30.00 30.00 37.00 37.00 37.00	25.81 32.54 25.51 23.09 22.03 17.43	14.53 6.15 9.37 18.83 20.24 24.34	0.61 0.90 1.52 2.50 2.59 2.80	19.96 19.90 19.54 18.90 18.81 19.19	115.0 206.0 137.0 169.0 88.0 307.0	4.0 4.0 4.0 3.5 3.5 3.5

Note :

Level = Read Level + Antenna Factor + Cable Loss - Preamp Factor
 Over Limit = Level - Limit Line

Free Free	del No. quency ra quency ra perature no Anten	ange : 30N ange : abo : 20 : TX	3000G MHz to 1G ove 1GHz 6 ° C OFF MO OFF MO	D H DE	etector etector umidity CAL ;	: Qua : 56	%	alue verage Va	
		Over	Limit	Read	Antenna	Cable	Preamp		
Freq. (MHz)	Level (dBuV/n	Limit n) (dB)	Line (dBuV/m)	Level (dBuV)	Factor (dB)	Loss (dB)	Factor (dB)	Azimuth (°angle)	Antenna High(m)
38.386	19.84	-10.16	30.00	24.60	14.59	0.61	19.96	189.0	1.0
46.430	20.64	- 9.36	30.00	28.95	11.12	0.57	20.00	217.0	1.0
119.908	21.76	- 8.24	30.00	34.61	6.15	0.90	19.90	234.0	1.0
393.872	25.43	-11.57	37.00	26.37	16.53	2.09	19.56	93.0	1.5
442.172	26.14	-10.86	37.00	27.01	16.56	2.28	19.71	169.0	1.5
839.720	27.98	- 9.02	37.00	21.33	22.73	3.12	19.20	175.0	1.5

Note :

Level = Read Level + Antenna Factor + Cable Loss - Preamp Factor
 Over Limit = Level - Limit Line

9. EN 61000-4-2 Electrostatic Discharge Test

Test standard	Model No.	Result
EN 61000-4-2	IR-3000G	Passed

Criteria for Compliance:

There shall be no damage, malfunction or change of status due to the conditioning. Flickering of an indicator during the application of the discharges is permissible, providing that there is no residual change in the EUT or any change in outputs.

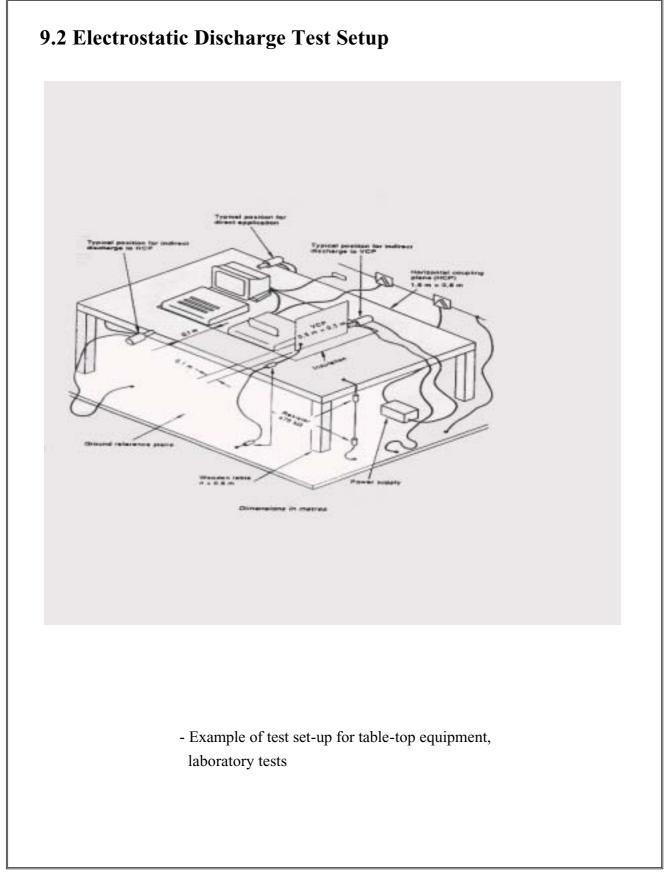
9.1 Electrostatic Discharge Test Description

This standard relates to equipment, systems, sub-systems and peripherals which may be involved in static electricity discharges owing to environmental and installation conditions. such as low relative humidity, use of low-conductivity (artificial-fibre) carpets, vinyl garments, etc., which may exist in allocations classified in standards relevant to electrical and electronic equipment.

The test set-up shall consist of a wooden able, 0.8 m high standing on the ground reference plane. A horizontal coupling plane(HCP), $1.6 \text{ m} \times 0.8 \text{ m}$, shall be placed on the table. The EUT and cables shall be isolated from the coupling plane by an insulating support 0.5 mm thick .

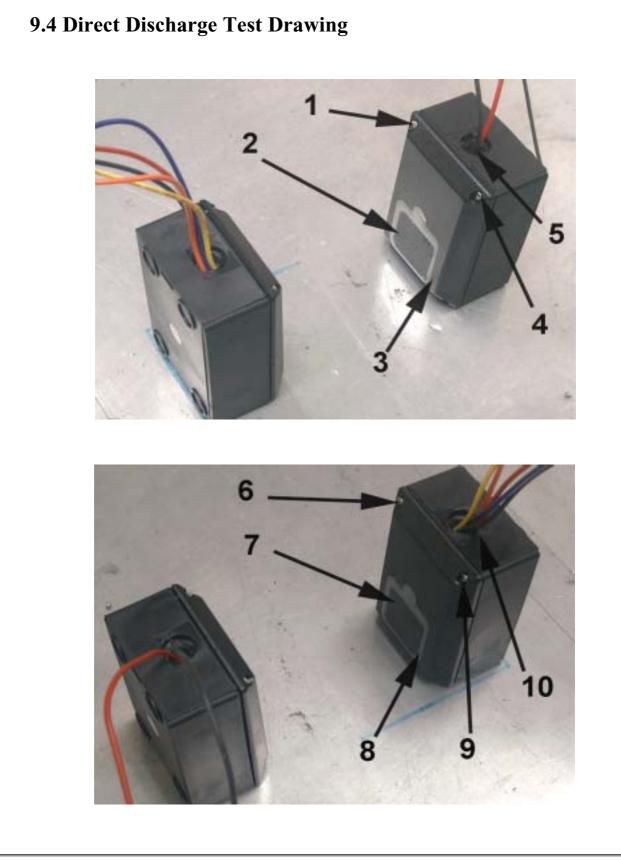
A ground reference plane shall be provided on floor of the laboratory. It shall be metallic sheet of 0.25 mm minimum thickness. The minimum size of the reference plane is 1 m, the exact size depending on the dimensions of the EUT.

It shall project beyond the EUT or coupling plane by at least 0.5 m on all sides. and shall be connected to the protective grounding system.

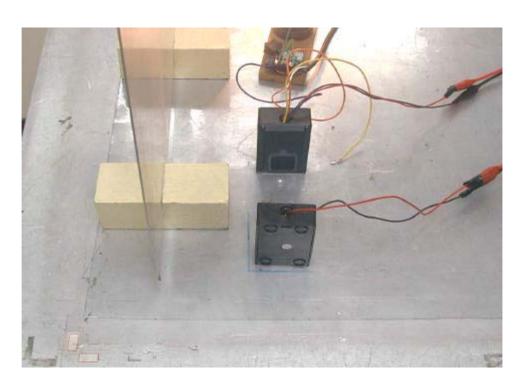

In order to minimize the impact of environmental parameters on test results, the tests shall be carried out in climatic and electromagnetic reference conditions.

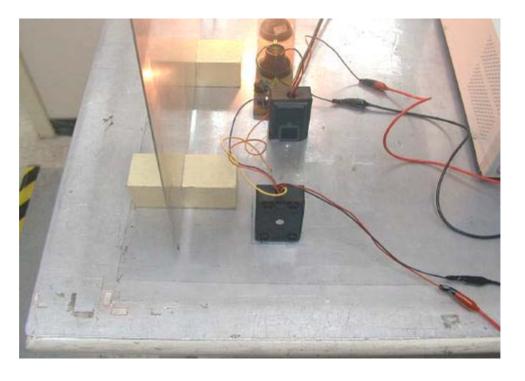
Climatic conditions

- ambient temperature:	15 °C to 35°C;
- relative humidity:	30 % to 60%
- atmospheric pressure:	86 KPa (860 mbar) to 106 KPa (1 060 mbar).
NOTE – Any other values are speci	fied in the product specification.


Electromagnetic conditions

The electromagnetic environment of the laboratory shall not influence the test results.




9.3 Electrostatic Discharge Test Limits

Test voltages ¹⁾ :							
Air discharges	(kV)	2; 4 & 8					
Contact discharges	(kV)	2;4 & 6					
Polarity		+&-					
Number of discharges per point for each voltag	e and polarity	10					
Interval between discharges (s) =1							
¹⁾ The test voltages specified are the open-circuit voltages.							
The test voltages for the lower severity levels	are included						
because all the lower severity levels must also	be satisfied.						

Indirect Discharge Test Drawing

Moc	lel	Ν	No. :						<u>IR-3(</u>)00G						_
Te	et I	tem ·	Direc		ischa	rae		Inc	trum	ent :	Nois	eKen	FSS	1001		
10	51 1		Direc		150114	i ge		1115			1 (015	CIXCII	LOO	TOOL		
			:							Hun					I	
Sto	orage	Caj	pacito	or :	150	pf	D	ischar	ge]	Resist	or :	33() Ohn	1		
			_													
Di	schar	-	Rate													
	21		Cont			~		23.7	21	717			ischa		0.1	717
	2 r +	KV	4 r +	KV	+	KV	+	KV	2 I +	KV	4 r +	KV	+	KV	+ *	KV
1	-	-		-		_	-	-	P	- P	P	- Р	P	- P	P	- Р
2	/	/	/	/	/	/	/	/	P	P	P	P	P	P	P	P
3	/	/	/	/	/	/	/	/	P	P	P	P	P	P	P	P
4	/	/	/	/	/	/	/	/	Р	Р	Р	Р	Р	Р	Р	Р
5	/	/	/	/	/	/	/	/	Р	Р	Р	Р	Р	Р	Р	Р
6	/	/	/	/	/	/	/	/	Р	Р	Р	Р	Р	Р	Р	Р
7	/	/	/	/	/	/	/	/	Р	Р	Р	Р	Р	Р	Р	Р
8	/	/	/	/	/	/	/	/	Р	Р	Р	Р	Р	Р	Р	Р
9	/	/	/	/	/	/	/	/	Р	Р	Р	Р	Р	Р	Р	Р
10	/	/	/	/	/	/	/	/	Р	Р	Р	Р	Р	Р	Р	Р
Ι.	"	Р″		mean	ns tł	ne E	UT	funct	tion	is c	orrec	t du	iring	the	test	•

Moc	lel	١	No. :					Ι	<u>R-300</u>	<u>)0G</u>						_
Те	st I	tem :	Indir	ect	Discl	harge	!	I	nstrur	nent	: Nc	oiseKe	en ES	S-100)L	
Te	mper	ature	:	27	°(2		R	elativ	ve H	umid	ity :	42	2 %	<u>RH</u>	
Di	schar	-				1 / Se harge					Ai	r Di	ischai	rae		
	2 H	KV		ατι KV		KV		KV	2 H	KV		KV KV		KV	15	KV
	+	-	+	-	+	-	+	-	+	-	+	-	+	-	+	-
1	Р	Р	Р	Р	Р	Р	/	/	/	/	/	/	/	/	/	/
2	Р	Р	Р	Р	Р	Р	/	/	/	/	/	/	/	/	/	/
3	Р	Р	Р	Р	Р	Р	/	/	/	/	/	/	/	/	/	/
4	Р	Р	Р	Р	Р	Р	/	/	/	/	/	/	/	/	/	/
5	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/
6	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/
7	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/
8	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/
9	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/
10	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/
l	w]	P "		mea	<u>ns tl</u>	ne E	UT	funct	tion	<u>is c</u>	orrec	t du	ring	the	test	

10. EN 61000-4-3 Radio-Frequency Electromagnetic Field Test

Test standard	Model No.	Result
EN 61000-4-3	IR-3000G	Passed

 Field Strength :
 10
 V/M ,

 Modulation :
 AM
 80 % ,
 1KHz .
 ON (YES) .
 OFF (____)

 Start :
 80
 MHz ,
 Stop :
 1000
 MHz .
 DC Power :
 24
 Vdc

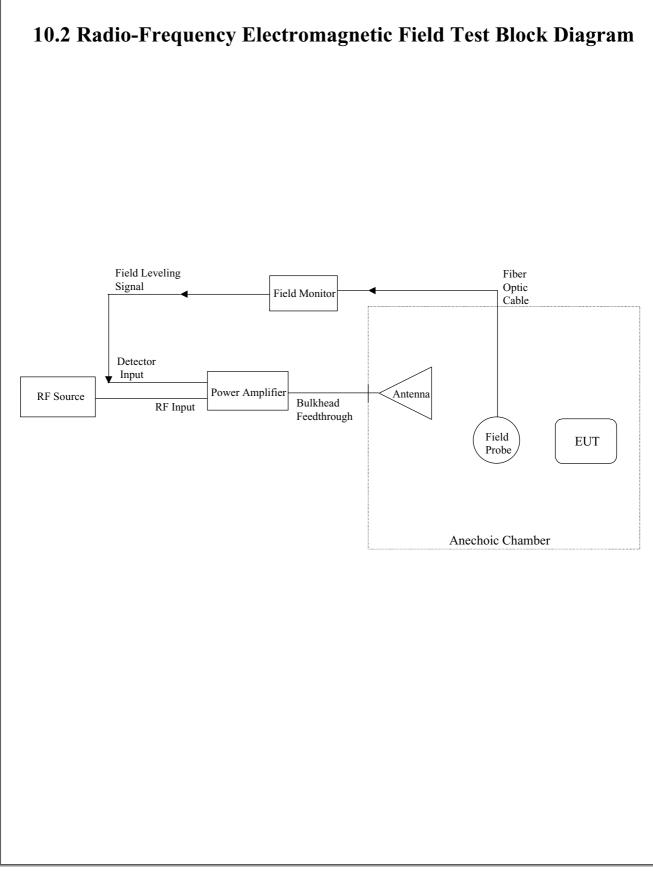
 Pulse modulation:
 1
 Hz
 ON (YES) .
 OFF (____)

 Start :
 80
 MHz ,
 Stop :
 1000
 MHz .
 DC Power :
 24
 Vdc

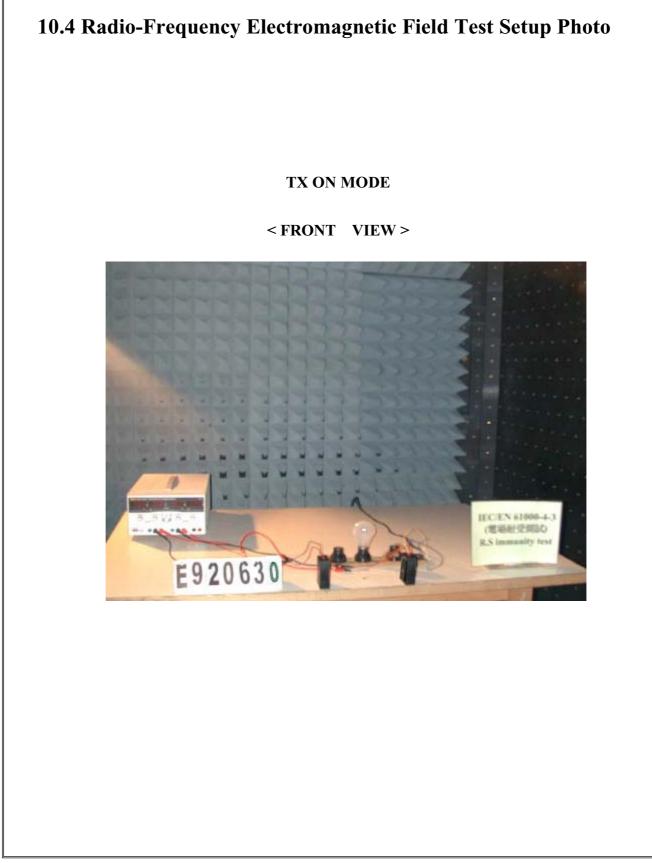
Criteria for Compliance:

There shall be no damage, malfunction or change of status due to the conditioning. Flickering of an indicator during the conditioning is permissible, providing that there is no residual change in the EUT or any change in outputs.

10.1 Radio-Frequency Electromagnetic Field Test Description

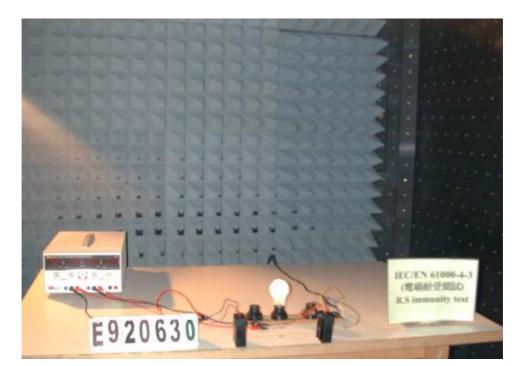

Most electronic equipment is, in some manner, affected by electromagnetic radiation. This radiation is frequently generated by such sources as the small hand-held radio transceivers that are used by operating, maintenance and security personnel, fixed-station radio and television transmitters, vehicle radio transmitters, and various industrial electromagnetic sources.

In addition to electromagnetic energy deliberately generated, there is also spurious radiation caused by devices such as welders, thyristors, fluorescent lights, switches operating inductive loads, etc. For the most part, this interference manifests itself as conducted electrical interference and, as such, is dealt with in other parts of this standard. Methods employed to prevent effects from electromagnetic fields will normally also reduce the effects from these sources.


The electromagnetic environment is determined by the strength of the electromagnetic field (field strength in volts per metre). The field strength is not easily measured without sophisticated instrumentation nor is it easily calculated by classical equations and formulae because of the effect of surrounding structures or the proximity of other equipment that will distort and/or reflect the electromagnetic waves.

All testing of equipment shall be performed in a configuration as close as possible to the installed case. Wiring shall be consistent with the manufacturer's recommended procedures, and the equipment shall be in its housing with all covers and access panels in place, unless otherwise stated.

If the equipment is designed to be mounted in a panel, rack or cabinet, it shall be tested in this configuration.



eld strength ¹⁾ (V/m)10odulation: mplitude modulation80%, 1 kHz, sinusoidal			
eld strength ¹⁾ (V/m) 10 odulation:			
eld strength ¹⁾ (V/m) 10 odulation:			
eld strength ¹⁾ (V/m) 10 odulation:			
eld strength ¹⁾ (V/m) 10 odulation:			
odulation:nplitude modulationlse modulation1 Hz (0.5 s ON: 0.5 s OFF)	Frequency range	(MHz)	80 to 1000
mplitude modulation80%, 1 kHz, sinusoidalilse modulation1 Hz (0.5 s ON: 0.5 s OFF)	Field strength ¹⁾	(V/m)	10
llse modulation 1 Hz (0.5 s ON: 0.5 s OFF)	Modulation:		
	Amplitude modulation		80%, 1 kHz, sinusoidal
The field strength quoted is the RMS value for the continuous wave, before modulation.	Pulse modulation		1 Hz (0.5 s ON: 0.5 s OFF)
	⁾ The field strength quoted is the RMS va	alue for the contin	nuous wave, before modulation.

TX OFF MODE

< FRONT VIEW >

11. EN 50130-4 Clause 7 Mains Supply Voltage Variations Test

Test standard	Model No.	Result
EN 50130-4 Clause 7	IR-3000G	Passed

Criteria for Compliance:

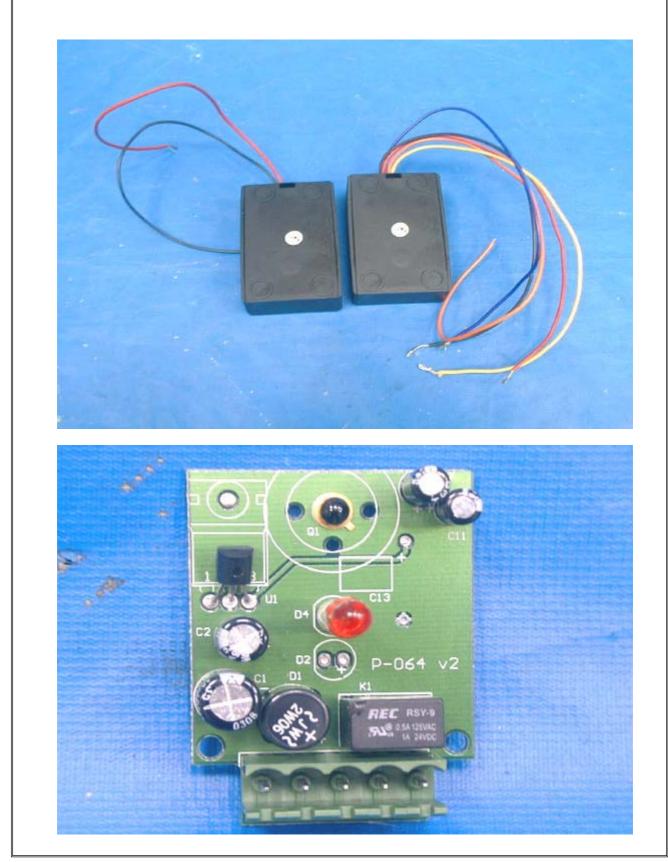
There shall be no damage, malfunction or change of status due to the different supply voltage conditions. The EUT shall meet the acceptance criteria for the functional test, during the conditioning.

11.1 EN 50130-4 Clause 7 Mains Supply Voltage Variations Tests Description

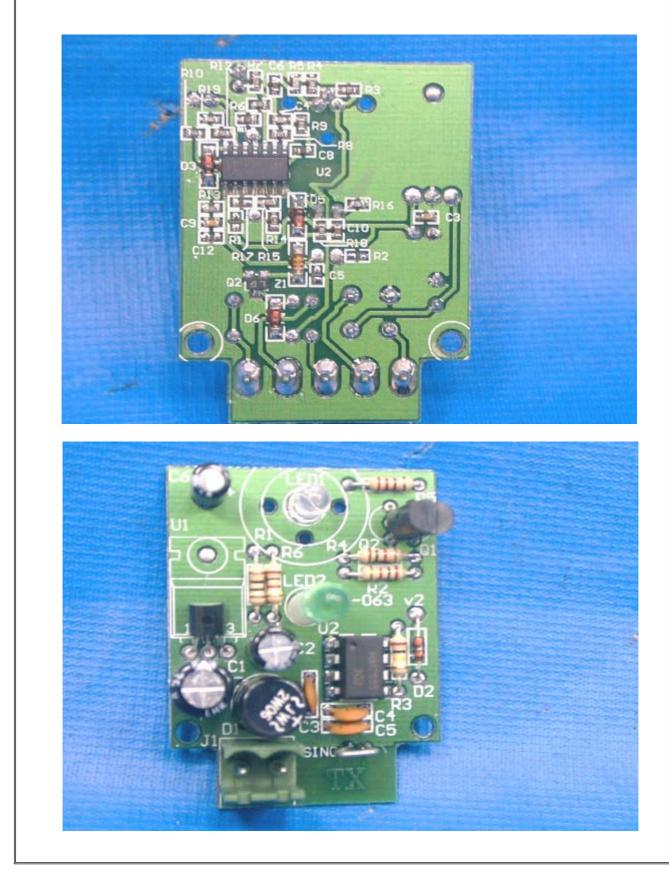
To demonstrate the ability of the equipment to function correctly over the anticipated range of mains supply voltage conditions.

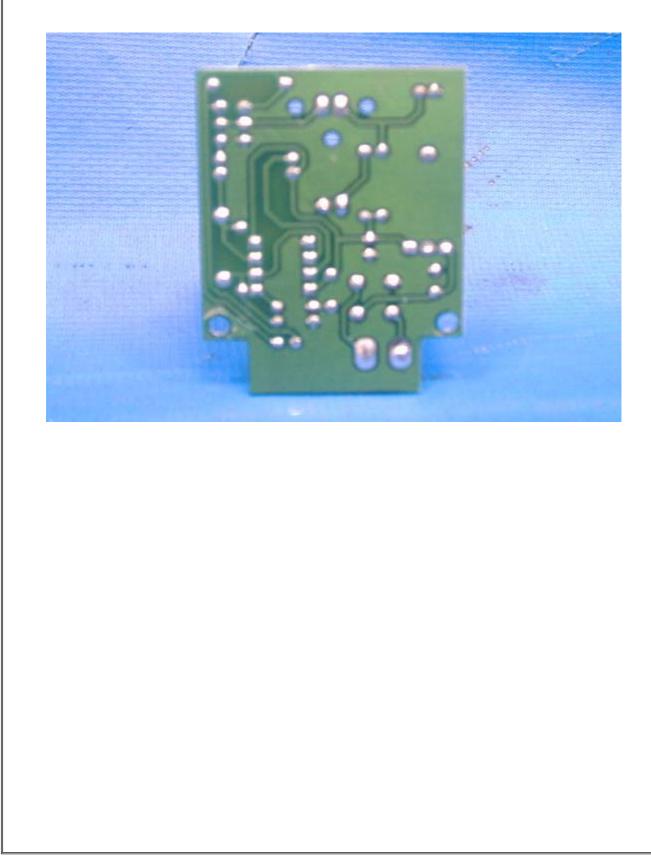
Subject the specimen to each of the power supply conditions, indicated in table 1, until temperature stability is reached:

Table 1								
Supply voltage max	(Umax)	Unom + 10%						
Supply voltage min	(Umin)	Unom – 15%						
Unom = Nominal mains v	oltage. Whe	re provision is made to						
Adapt the equipment to su	uit a number	of nominal supply voltages						
(e.g. by transformer tap c	hanging), the	e above conditioning						
severity shall be applied f	or each nomi	nal voltage, with the						
equipment suitably adapte	ed. For equip	ment which is claimed to						
be suitable for a range of	nominal mai	ns voltages(e.g.220/240 V)						
without adaptation, Umax	a = (Maximu	m Unom) + 10%,and Umin =						
(Minimum Unom) – 15%	. In any case	the range of Unom must						


Test Mode	Instrument	Model No.	Serial No.	Next Cal. Date	Cal. Interval
	R & S Receiver	ESHS10	830223/008	May 22, 2004	1Year
	Rolf Heine LISN	NNB-4/63TL	98008	May 01, 2004	1Year
Conduction	R & S LISN	ESH3-Z5	844982/039	Aug. 06, 2004	1Year
(No.1)	Spectrum Analyzer	R3261A	91720076	June 08, 2004	1Year
	RF Cable	Rg400	N/A	May 12, 2004	1Year
	Schaffner ISN	T411	N/A	June 29, 2004	1Year
	R & S Receiver	ESVS30	863342/012	May 22, 2004	1Year
	Schaffner Pre-amplifier	CPA9232	1028	May 20, 2004	1Year
	COM-Power Horn Ant.	AH-118 (1GHz~18GHz)	10095	May 21, 2004	2Year
Radiation (OP No.1)	Schwarzbeck Precision Dipole Ant	VHAP (30MHz~1GHz)	970 + 971 953 + 954	June 26, 2006	3Year
	R &S Signal Generator	SMY01	841104/037	Apr. 29, 2004	2Year
	RF Cable	No. 1	N/A	May 11, 2004	1Year
	EMCO Antenna	3142B (26MHz~2GHz)	9904-1370	Aug. 24, 2004	1Year

12 The List of Test Instruments


Test Mode	Test item	Instrument	Model No.	Serial No.	Next Cal. Date	Cal. Interval
	4-2	ESD Test System	ESS-100L (A)TC-815D	4099C01970	July 14, 2004	1Year
EMS	4-3	Comtest G-Strip	G-320	CC112-0008	Oct. 01, 2005	2Year
(NO.1)	4-3	HP Signal Generator	8648A	3619U00426	Sep. 14, 2004	1Year
	3-2 3-3	HP Harmonic/ Flicker Test System	6842A	3531A-00141	Dec. 19, 2004	2Year


Page 39 of 42

Page 40 of 42

Page 41 of 42

VERIFICATION of conformity with European EMC Directive

No. E920630

Document holder:	YUAN HSUN ELECTRIC CO., LTD.
Type of equipment:	Through Beam Photoelectric Beam Sensor
Type designation:	IR-3000G

A sample of the equipment has been tested for CE-marking according to the EMC Directive, 89/336/EEC. & 92/31/EEC & 93/68/EEC Standard(s) used for showing compliance with the essential requirements of the directive:

Standard(s):

EN 55022 : 1998+A1: 2000 EN 61000-3-2:2000 EN 61000-3-3:1995+A1: 2001

EN 50130-4 :1995 + A1:1998

EN 61000-4-2: 1995 + A2: 2001 EN 61000-4-3: 1996 + A2: 2001 EN 61000-4-4: 1995 + A2: 2001 EN 61000-4-5: 1995 + A1: 2001 EN 61000-4-6: 1996 + A1: 2001 EN 61000-4-11: 1994 + A1: 2001 Main Supply Voltage Variations

The referred test report(s) show that the product fulfills the requirements in the EMC Directive for CE marking. On this basis, together with the manufacturer's own documented production control, the manufacturer (or his European authorized representative) can in his EC Declaration of Conformity verify compliance with the EMC Directive.

Signed for and on behalf of PEP Testing Laboratory

M. J. Toui

M. Y. Tsui / President

Date: <u>NOV. 07, 2003</u>

Class B

Performance Criterion

Declaration of Conformity

The following

Applicant	:	YUAN HSUN ELECTRIC CO., LTD.
Equipment	:	Through Beam Photoelectric Beam Sensor
Model No.	:	IR-3000G
Report No.	:	E920630

is herewith confirmed to comply with the requirements set out in the Council Directive on the Approximation of the Laws of the Member States relating to Electromagnetic Compatibility(89/336/EEC) and the amendments in the Council Directive 92/31/EEC, 93/68/EEC.

For the evaluation of above mentioned Directives, the following standards were applied:

1) EN 55022: 1998+A1 : 2000

Class B

- 2) EN 61000-3-2 : 2000
- 3) EN 61000-3-3 : 1995+A1: 2001
- 4) EN 50130-4:1995 +A1:1998
 - EN 61000-4-2 : 1995+A2: 2001 EN 61000-4-3 : 1996+A2: 2001 EN 61000-4-4 : 1995+A2: 2001 EN 61000-4-5 : 1995+A1: 2001 EN 61000-4-6 : 1996+A1: 2001 EN 61000-4-11 : 1994+A1: 2001 Main Supply Voltage Variations

The following manufacturer is responsible for this declaration:

YUAN HSUN ELECTRIC CO., LTD.

NO. 57, CHUNG HE RD., ZUO-YING DIST., KAOHSIUNG CITY 813, TAIWAN, R. O. C.

TAIWAN / NOV. 07, 2003

Place and Date

Signature of responsible Person